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Abstract: The reliability of composite system (series, parallel) is improved by (i) reduction method, and by (ii) hot duplication,
considering the systems survivor function. Related survivor equivalence functions and pointwise survivor equivalence factors are
derived in all cases when the components lifetime distribution follow the gamma–Weibull distribution introduced recently by Leipnik
and Pearce.
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1 Introduction

The reliability equivalence has been introduced by Råde [6], who developed this concept to improve the reliability of
various systems [7]. Following Sarhan [9] and Xia & Zhang [14], the reliability equivalence factor (REF) is a factor by
which the failure rates of some of the system’s components should be reduced in order to reach equality of the reliability
of another better system.

Detailed account and various generalizations of Råde’s ideas can be find in Sarhan’s articles [8–10]. He studied among
others the reliability of composite, i.i.d. series/parallel systems by the failure rates decreasing, by hot and cold duplication.
He also consider parameter estimation in composite systems and related questions (mainly when the life distribution of
components is exponential), see Sarhan’s cited articles and the references therein.

Råde discussed three different methods to improve the systems reliability: 1. Improving the quality of r ≤ n
components by decreasing their hazard rates; 2. adding a hot component to the system, and 3. adding a cold (redundant)
component to the system [6], [7]. However, Sarhan [8] introduced more general methods in systems reliability
improvement: a) modifying 1. by introducing a factor ρ ∈ (0,1); b) assuming cold redundant standby components
connected with some components by random switches. All mentioned results concern components of exponential life
distributions. The only exceptions are the work by Xia and Zhang [14], where the case od the parallel system of
gamma–(life) distributed components has been discussed and the recent paper [13] in which the modified Weibull
distribution’s parameters have been estimated; these estimation results could be help in system identification questions,
consult also [10] and the references therein.

It is well–known that the hazard rate (or otherwords failure rate) is constant only for exponential life distribution; the
gamma–distribution has a functional hazard rate [14]. So, Sarhan’s n–component parallel system results are generalized in
[14] by taking the more general gamma–distribution. In the same time Xia and Zhang unified the concept of REF, where
now F means function instead of earlier factor. To get more general and substantially simpler approach we introduce the
survivor equivalence function.

Definition 1. The survivor equivalence function (SEF) is a function by which the survivor function of the considered
system has to be multiplied in order to reach pointwise equality of the survivor function of another better system.
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In this article we obtain the SEF in general case, when each components life distribution is described by a random
variable (r.v.) ξ defined on a fixed probability space (Ω ,F,P), with the cumulative distribution function (CDF)

F(x) = P
{

ξ < x
}
, x ∈ R ,

and the probability distribution function (PDF)

f (x) = F ′(x) ,

such that exists (in general) for absolutely continuous CDF. The related reliability function one defines by

R(x) = 1−F(x), x ∈ R .

We study the composite systems (i) with independent identically distributed components (IIDC) in series connected (S),
and (ii) composite system (P) which components are connected in parallel. Now, denote R j(x) the reliability function of
the jth component in a composite system and define the systems survivor function as its reliability function. We have

SS(x) =
n

∏
j=1

R j(x), (1)

SP(x) = 1−
n

∏
j=1

[
1−R j(x)

]
, (2)

where SS,SP denote the survivor functions of the series and the parallel systems respectively.
The number od changed components has been calculated by the criteria of improved reliability when the reduction

method is combined with hot duplication method. It is shown in section 2 that for the series composite systems the number
of components treated by reduction method has to be equal to the number of hot duplicated components. Moreover, parallel
systems work without such limitations.

2 Reduction and Hot Duplication

Let us improve the reliability R(x) of a component by some intervention, calling this procedure reduction method;
introducing a reduction factor ρ ∈ (0,1), the improved components reliability will be

R(ρx)≥ R(x) .

Applying the reduction method to any r, 1 ≤ r ≤ n components in (S),(P), we get improved composite systems (Sr),(Pr);
being R monotone nonincreasing, the concept needs only technological support, the introduced mathematical model is well
defined.

The related survivor functions are

Sρ
Sr
(x) =

[
R(ρx)

]r[R(x)]n−r
, (3)

Sρ
Pr
(x) = 1−

[
1−R(ρx)

]r[1−R(x)
]n−r

. (4)

According to Definition 1 multiplying the original survivor functions SS(x),SP(x) by SEFs rρSr
(x), rρPr

(x) respectively, we
reduce r arguments of R j’s to ρx,ρ ∈ (0,1) in (3) and (4). Hence

r
ρ
Sr
(x)SS(x) = Sρ

Sr
(x),

r
ρ
Pr
(x)SP(x) = Sρ

Pr
(x) ,

that is

r
ρ
Sr
(x) =

[
R(ρx)
R(x)

]r

,

r
ρ
Pr
(x) =

1− [1−R(ρx)]r[1−R(x)]n−r

1− [1−R(x)]n
.
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Prescribing ρ ∈ (0,1) and r ∈ {1, · · · ,n} we can work with exact SEF functions associated with the reduction method.
Now, assume that q, 1 ≤ q ≤ n components of the considered systems (S),(P) are hot duplicated, that is q components

has been in parallel switched with another new IIDC. This procedure results in transformed systems (SH
q ),(P

H
q ) such that

are composed now by n+q independent identical components. The reliability of a pair of hot duplicated components’ has
reliability function equal to

1−
[
1−R(x)

]2
= R(x)

[
2−R(x)

]
,

therefore the related survivor functions become

SH
Sq
(x) =

[
R(x)

]n[2−R(x)
]q
,

SH
Pq
(x) = 1−

[
1−R(x)

]n+q
. (5)

According to Definition 1, one obtains the pointwise SEF in the form

rSr(x)SS(x) = Sρ
Sr
(x) =

[
R(ρx)

]r[R(x)]n−r

= SH
Sq
(x) =

[
R(x)

]n[2−R(x)
]q
,

that is, we get the following equation in ρ:

R(ρx) = R(x)
[
2−R(x)

]q/r
. (6)

Now, the following crucial question arises:

• Has to be the ratio q/r of q hot duplicated components and r reduced reliability components in a series composite
system (S) bounded?

It can be easily shown that q = r. Indeed, being probability of some random event, the right–hand expression in (6) has to
be less than or equal to 1. So, considering the function f (x) = x(2− x)q/r on the range x ∈ [0,1], we conclude that

max
0≤x≤1

f (x) = f
( 2

1+q/r

)
=

2
1+q/r

( 2
1+ r/q

)q/r
.

Obviously, the last expression’s minimum equals 1 at q = r, q,r ∈ {0,1, · · · ,n}, else (6) is senseless. On the other hand,
the reliability function R is of bounded variation

(
R(−∞) = 1 ≥ R(x) ≥ 0 = R(∞), x ∈ R

)
, monotone nonincreasing(

R(x)≥ R(y) whenever x < y
)

and left–continuous
(

limh→0 R(x−h) = R(x)
)
. Any such function R possesses a so-called

generalized inverse
R⋆(z) := inf{x : R(x)≥ z}, 0 ≤ z < 1 .

Moreover, if R is strongly monotone decreasing, that is R(x) > R(y) for all 0 < x < y, then R⋆ coincides with the usual
‘ordinary’ inverse R−1.

Applying now the generalized inverse operator R⋆ to (6) we deduce the pointwise hot–duplication reduction factor
for the system (S):

ρH
S = x−1R⋆

(
R(x)

[
2−R(x)

])
, x > 0 . (7)

Also, the following question turns out immediately:

• Has to be the ratio q/r of q hot duplicated components and r reduced reliability components in a parallel
composite system (P) bounded?

To answer, we derive the equation
Sρ
Pr
(x) = SH

Pq
(x) ,

such that corresponds to (P). By virtue of (4) and (5) this equation becomes

R(ρx) = 1−
[
1−R(x)

]1+q/r
.

Because
1−

[
1−R(x)

]1+q/r ≤ 1, q,r ∈ {0,1, · · · ,n} ,
no limitation turns out for q/r in the case of (P). Hence, the SEF for parallel system (P) becomes

ρH
P = x−1R⋆

(
1−

[
1−R(x)

]1+q/r
)
, x > 0 . (8)

Thus, we obtain the following result.
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Theorem 1. Assume that r IIDC components of (S) are improved by reduction method, and q = r components (in general
not the same ones) are improved by hot duplication in (S). Then the pointwise hot duplication SEF associated with
composite system (Sr) is given by

r
ρ
Sr
(x) =

[
R(ρH

S x)
R(x)

]q

where ρH
S is described by (7).

Moreover, the pointwise hot–duplication SEF associated with parallel system (Pr) is

r
ρ
Pr
(x) =

1− [1−R(ρH
P x)]r[1−R(x)]n−r

1− [1−R(x)]n

for all q,r ∈ {0,1, · · · ,n}. Here ρH
P is given by (8).

The strong monotone (increasing) CDF F(x) means strong monotone (decreasing) reliability function R(x). This
ensures the existence of the ‘ordinary inverse’ R−1(x), that is, the generalized inverse R⋆ becomes R−1 in (7) and (8). So
the following result.

Corollary 1. Assume that the probability distribution function F is strong monotone, i.e. F(x) < F(y) whenever x < y.
Then

r
ρ
Sr
(x) =

[
2−R(x)

]q
, q = r; q,r ∈ {1, · · · ,n}; (9)

moreover we have

r
ρ
Pr
(x) =

1− [1−R(x)]n+q

1− [1−R(x)]n
. (10)

At this point the question of approximate solution of equation (6) arises, when the there exists the PDF f (x) = F ′(x).
Under q = r equation (6) becomes

R(ρx) = R(x)
[
2−R(x)

]
. (11)

Applying Maclaurin approximation, that is

R(x) = R(0+)+R′(0+)x+o(x)

as x approaches zero from the right, to both sides to (11). Thus

ρ =
R(0+)

(
1−R(0+)

)
R′(0+)

1
x
+
(
2−2R(0+)

)
+o(1) .

Hence, we get the following result.

Corollary 2. For small values of the argument x > 0, we have

ρH
Sr
=

R(0+)
(
1−R(0+)

)
R′(0+)

1
x

+
(
2−2R(0+)

)
+o(1) . (12)

Endly, to control the behaviour of the reduction factor ρH
Sr

near to the origin we make the common sense assumption
R(0+) = 1. Hence, we arrive at

ρH
Sr
= o(1) ,

that is, near to the origin ρH
Sr
≈ 0. Also we point out that if R(x) is continuously differentiable at some x = a > 0, we can

easily extend (12) easily by the Taylor series expansion to the neighborhood of a, leaving this to the interested reader.
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3 Gamma–Weibull distribution and related survivor functions

Leipnik and Pearce [3] introduced recently the so–called gamma–Weibull distribution (gW); in fact, they renormalize the
multiplied densities of the gamma– and the Weibull distributions. Nadarajah and Kotz [4] pointed out that it is enough to
take four parameters to define the gW (θ) distribution having (PDF)

fgW (x) =


Kxα−1e−µx−axκ

x > 0

0 x ≤ 0
, (13)

where θ := (α ,µ ,a,κ) > 0 and K stands for the normalizing constant. So, in this case the r.v. ξ is said to have gW (θ)

0.5 1 1.5 2 2.5 3
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0.5

0.75

1
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1.5

Fig. 1 Different patterns of the gamma–Weibull probability density function fgW (x), with α = 3, µ = 3, a = 2; κ = 0.363 dashed line,
κ = 1 solid line and κ = 2 thin solid line.

distribution, such that we write ξ ∼ gW (θ). Because the linear and the fractional power parts in the exponent and the
polynomial factor of the PDF it is very flexible for different modeling purposes. So, besides the straightforward cases
when gW (θ) covers the gamma– and the Weibull distributions, the case θ = (1,K,0,κ) stands for the exponential E (K)
distribution with parameter K > 0 and θ = (2,0,K/2,2) gives the celebrated Rayleigh distribution’s PDF among others.

The normalizing constant K and the reliability function related to the r.v. ξ ∼ gW (θ), such that reads

RgW (x) :=

1 x ≤ 0∫ ∞

x
fgW (t)dt x > 0

,

are expressed in terms of the so–called Upper incomplete confluent Fox–Wright generalized hypergeometric function 1ψ0,
which has been introduced recently by Srivastava and Pogány [11]. Here we give in brief the main properties of this higher
transcendental function.

The Fox–Wright generalization pΨq of the generalized hypergeometric pFq function with p numerator and q
denominator parameters is the series

pΨq

[
(ap,αp)
(bq,βq)

∣∣∣x
]

:=
∞

∑
m=0

p
∏
j=1

Γ
(
a j +α jm

)
q
∏
j=1

Γ
(
b j +β jm

) xm

m!
, (14)

where (ur,ϒr) stands for the parameter r–tuple (u1,ϒ1), · · · ,(ur,ϒr); a j ∈C, bk ∈C\Z−
0 , α j,βk > 0, j = 1, p,k = 1,q and

the empty product means unity. The convergence of the above series is ensured when

∆ := 1+
q

∑
j=1

β j −
p

∑
j=1

α j > 0 (15)
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for suitably bounded values of |x|. In the case ∆ = 0, the convergence holds in the open disc

|z|< Ξ =
q

∏
j=1

β β j
j ·

p

∏
j=1

α−α j
j ,

see e.g. [12].
The Upper incomplete gamma–function [1, 8.350 2.] we define as the integral

Γ (s,z) :=
∫ ∞

z
ts−1e−t dt ; lim

z→0
Γ (s,z) = Γ (s) .

Replacing in series expansion (14) all Gamma–function terms by upper incomplete Gamma–function terms with identical
second variable z, we get the Upper Incomplete Fox–Wright Psi–Function [11]:

pψq

[
(ap,αp)
(bq,βq)

∣∣∣Γ(x,z)] :=
∞

∑
m=0

p
∏
j=1

Γ
(
a j +α j m,z

)
q
∏
j=1

Γ
(
b j +β j m,z

) xm

m!
.

for all z ≥ 0 having on mind the parameter constraint (15).
We point out that the Fox–Wright function can be easily evaluated by in-built routines for hypergeometric functions,

e.g. M athematica’s Gamma[a, z].
Now, the normalizing constant K = K(θ) of the PDF (13) is [5, Eq. (9)]

K−1=



µ−α
1Ψ0

[ (α,κ)
—

∣∣∣− a
µκ

]
0 < κ < 1

Γ (α)

(µ +a)α κ = 1

1
κaα/κ 1Ψ0

[ (α
κ ,

1
κ )

—

∣∣∣− µ
a1/κ

]
κ > 1

,

where 1Ψ0[·] is the confluent Fox–Wright Ψ–function.
The reliability function RgW (x) of a component behaved according to the gW (θ) life–distribution becomes

RgW (x) =



1ψ0

[ (α,κ)
—

∣∣∣Γ (−aµ−κ ,µx
)]

1Ψ0

[ (α,κ)
—

∣∣∣− a
µκ

]
Γ
(
α,(µ +a)x

)
Γ (α)

1ψ0

[ (α
κ ,

1
κ )

—

∣∣∣Γ (−µa−
1
κ ,axκ)]

1Ψ0

[ (α
κ ,

1
κ )

—

∣∣∣− µ
a

1
κ

]
(16)

where the cases appear for 0 < κ < 1, κ = 1, κ > 1 respectively for any x > 0, while for x ≤ 0 it is RgW (x)≡ 1, see Fig 2.
Here 1ψ0 denotes the confluent upper incomplete Fox–Wright Ψ–function.
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Indeed, assume κ > 1. Then we have

RgW (x) = K
∫ ∞

x
tα−1e−µt−atκ

dt (17)

= K
∞

∑
n=0

(−µ)n

n!

∫ ∞

x
tα+n−1 exp

{
−atκ}dt (18)

=
K

κa
α+1

κ

∞

∑
n=0

(
− µ

a
1
κ

)n

n!

∫ ∞

axκ
y

α+n
κ −1e−ydy (19)

=
K

κa
α+1

κ

∞

∑
n=0

Γ
(α+n

κ , axκ))
n!

(
− µ

a
1
κ

)n
, (20)

such that proves (16). In the case κ ∈ (0,1) one expands the term e−axκ
into the Maclaurin series and then integrate

termwise. Finally, κ = 1 results in the Gamma distribution.
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Fig. 2 Different patters of the gamma–Weibull reliability functions RgW (x) with α = 3, µ = 3, a = 2; κ = 0.363 dashed line, κ = 1
solid line and κ = 2 thin solid line.

Theorem 2. Let us consider (S),(P) consisting from n IIDC such that have gW (θ) life–distributions. Then the related
survivor functions have the form

SgW,S(x) =
[
RgW (x)

]n

SgW,P(x) = 1−
[
1−RgW (x)

]n
,

where RgW (x) is displayed in (16).

Proof. By virtue of (1) we build the survivor functions of systems (S),(P) applying n i.i.d. replicæ of a r.v. ξ ∼ gW (θ)
such that describes the life–distribution of all involved components.

Now, we obtain the pointwise SEF rH and survivor equivalence factors ρH for both - series and parallel composite
systems. The proof of all relations can be realized combining Corollary 1 and Theorem 2.

Theorem 3. Suppose that n IID components having gW (θ), θ = (α ,µ ,a,κ)> 0 life distribution, are connected in series
forming a composite system (Sr), and connected in parallel to form a composite system (Pr) in which r components have
been improved by reduction method. Improving the pointwise reliability of 1 ≤ q ≤ n components by hot–duplication, the
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related pointwise SEF rHA (x) and the related pointwise survivor equivalence factors ρH
A , A ∈ {S,P} become

rHSr
(x) =

[
2−RgW (x)

]q
, (21)

ρH
S = x−1R−1

gW

(
RgW (x)

[
2−RgW (x)]

)
; (22)

rHPr(x) =
1− [1−RgW (x)]n+q

1− [1−RgW (x)]n
, (23)

ρH
P = x−1R−1

gW

(
1−

[
1−RgW (x)

]1+q/r
)
. (24)

when q = r for (S), however no restrictions appear upon q/r for (P); RgW (x) is described in (16) and R−1
gW is the inverse

of RgW .

4 Numerical results and conclusion

To illustrate how the theory, which were obtained in the previous sections, can be applied, three different parameter cases
are presented in this section.

The gW (θ) lifetime–distribution’s PDF takes three analytically different forms depending on the κ , compare Fig 1.
So do the associated reliability functions as illustrates Fig 2. via (16). Therefore we decide to study the PDF (13) when
(α,µ ,a) = (3,3,2) and κ ∈ {0.363,1,2} as shown in Fig 1.

Table 1 Numerical simulation results for θ = (3,3,2,0.363).

x RgW SgW,S SgW,P ρH
S ρH

P rHS3
rHP2

0.1 0.98947 0.91878 1.00000 0.1850 0.0900 1.03193 1.00000

0.4 0.77863 0.13509 0.99999 0.4758 0.3440 1.82199 1.00053

0.7 0.48882 0.00326 0.99534 0.6293 0.5200 3.45102 1.03133

1.0 0.27098 0.00003 0.92022 0.7234 0.6367 5.16891 1.15884

1.3 0.13941 1.43 ·10−7 0.69913 0.7852 0.7160 6.44099 1.32423

1.6 0.06829 4.73 ·10−10 0.43216 0.8274 0.7713 7.20813 1.45063

Table 2 Numerical simulation results for θ = (3,3,2,1).

x RgW SgW,S SgW,P ρH
S ρH

P rHS3
rHP2

0.1 0.98561 0.89053 1.00000 0.2220 0.1150 1.04379 1.00000

0.4 0.67668 0.04396 0.99988 0.5623 0.4395 2.31738 1.00343

0.7 0.32085 0.00011 0.95474 0.7199 0.6316 4.73446 1.11599

1.0 0.12465 5.83 ·10−8 0.65530 0.8060 0.7428 6.59547 1.34815

1.3 0.04304 1.18 ·10−11 0.29667 0.8567 0.8098 7.49460 1.50254

1.6 0.01375 1.28 ·10−15 0.10488 0.8885 0.8520 7.83608 1.56759
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Table 3 Numerical simulation results for θ = (3,3,2,2).

x RgW SgW,S SgW,P ρH
S ρH

P rHS3
rHP2

0.1 0.98805 0.90829 1.00000 0.2150 0.1020 1.03628 1.00000

0.4 0.65761 0.03497 0.99981 0.6041 0.4585 2.41900 1.00454

0.7 0.23936 0.00001 0.88794 0.7895 0.7183 5.45773 1.19127

1.0 0.05219 5.50 ·10−11 0.34872 0.8799 0.8390 7.38992 1.48329

1.3 0.00724 7.52 ·10−18 0.05644 0.9250 0.8998 7.91348 1.58280

1.6 0.00066 3.56 ·10−26 0.00526 0.9490 0.9320 7.99209 1.59842

Assume that (S),(P) consist from n = 8 IID components having gW (θ) lifetime–distributions, while improving r =
3,q= 2 components by reduction method we get (S3),(P2) respectively. These systems are now treated by hot duplication.
According to our findings (see Theorem 1) exactly 3 components have to be improved by hot duplication in (S); and we
have no such limitation for (P).

The numerical simulation results include three cases: κ ∈ (0,1),κ = 1,κ > 1, presented on Table I, II and III
respectively. The tables contain six sampled values of the reliability function RgW (x) of a component; the survivor
functions SgW,S(x),SgW,P(x) of series and parallel systems respectively; the survivor equivalence factors ρH

S ,ρH
P and the

SEFs rH
Sr
(x), rH

Pr
(x) all under the same number of reduction–improved components r = 3,q = 2. The sample nodes

x = 0.1,0.4,0.7,1.0,1.3,1.6 are used in all cases (by comparison purposes). All these functional characteristics we
calculate by (16), Theorems 2 and 3.

As we reported most of recent articles are devoted to various topology composite systems, having preferably
exponential E (λ ) lifetime distribution, see [8], [9], [10] and the references therein. The Gamma–life–distributed
components case is discussed [14] and [13] gives attention to Weibull–distributed components. Although, we generalize
these findings introducing the gamma–Weibull gW (θ) lifetime–distribution for components. Also, there is a considerable
interest to extend the here exposed results to another lifetime–distributions coming from the so–called Inverse Weibull
distribution family and allied distributions studied recently by Khan and King, see [2] and the references therein.

The SEF study precises the survivor functions for both models’ (S),(P) by Theorems 2 and 3 and the reliability
function expression (16) for the gamma–Weibull distribution gW (θ).

Moreover, we conclude that the hot duplication can be successfully replaced by reliability reduction method using
only the same number of improved components for (S), while the reduction method is completely independent from hot
duplication for the parallel systems P), such that clearly expose Corollary 1 by virtue of (9) and (10) respectively. These
findings we illustrate on series/parallel composite systems having life–distribution gW (θ).
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